Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(17): 25659-25670, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38483714

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) were typical environmental contaminants that accumulated continuously in sediment. Microbial degradation is the main way of PAH degradation in the natural environment. Therefore, expanding the available pool of microbial resources and investigating the molecular degrading mechanisms of PAHs are critical to the efficient control of PAH-polluted sites. Here, a strain (identified as Xanthobacteraceae bacterium) with the ability to degrade pyrene was screened from the rhizosphere sediment of Vallisneria natans. Response surface analysis showed that the strain could degrade pyrene at pH 5-7, NaCl addition 0-1.5%, and temperature 25-40 °C, and the maximum pyrene degradation (~ 95.4%) was obtained under the optimum conditions (pH 7.0, temperature 28.5 °C, and NaCl-free addition) after 72 h. Also, it was observed that the effect of temperature on the degradation ratio was the most significant. Furthermore, eighteen metabolites were identified by mass spectrometry, among which (2Z)-2-hydroxy-3-(4-oxo-4H-phenalen-3-yl) prop-2-enoic acid, 7-(carboxymethyl)-8-formyl-1-naphthyl acetic acid, phthalic acid, naphthalene-1,2-diol, and phenol were the main metabolites. And the degradation pathway of pyrene was proposed, suggesting that pyrene undergoes initial ortho-cleavage under the catalysis of metapyrocatechase to form (2Z)-2-hydroxy-3-(4-oxo-4H-phenalen-3-yl) prop-2-enoic acid. Subsequently, this intermediate was progressively oxidized and degraded to phthalic acid or phenol, which could enter the tricarboxylic acid cycle. Furthermore, the pyrene biodegradation by the strain followed the first-order kinetic model and the degradation rate changed from fast to slow, with the rate remaining mostly slow in the later stages. The slow biodegradation rate was probably caused by a significant amount of phenol accumulation in the initial stage of degradation, which resulted in a decrease in bacterial activity or death.


Asunto(s)
Alphaproteobacteria , Ácidos Ftálicos , Hidrocarburos Policíclicos Aromáticos , Rizosfera , Pirenos/química , Hidrocarburos Policíclicos Aromáticos/metabolismo , Bacterias/metabolismo , Biodegradación Ambiental , Alphaproteobacteria/metabolismo , Fenoles
2.
Water Sci Technol ; 87(8): 1893-1906, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37119162

RESUMEN

The advanced treatment of secondary effluents was investigated by employing heterogeneous catalytic ozonation integrated with a biological aerated filter (BAF) process. The results indicated that catalytic ozonation with the prepared catalyst (MnxCuyOz/γ-Fe2O3) significantly enhanced the performance of pollutant removal and broke up macromolecules into molecular substances by the generated hydroxyl radicals. These molecular substances were easily absorbed by microorganisms in the microbial membrane reactor. In the BAF process, chemical oxygen demand (COD) (chemical oxygen demand) decreased from 54.26 to 32.56 mg/L, while in catalytic ozonation coupled with the BAF, COD could be reduced to 14.65 mg/L (removal ratio 73%). Under the same condition, NH4+-N decreased from 77.43 to 22.69 mg/L and 15.73 mg/L (removal ratio 70%) in the BAF and the catalytic ozonation coupled with BAF, respectively. In addition, the model that highly correlated influent COD to effluent COD and reactor height for filler could predict the removal ratio of COD of the BAF system. Based on the microbial community analysis, ozone in the solution had a certain screening effect on microorganisms, which helped to better adapt to the ozone-containing environment. Therefore, the integrated process with its efficient, economic, and sustainable advantages was suitable for the advanced treatment of secondary effluents.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Aguas Residuales , Contaminantes Químicos del Agua/química , Ozono/química , Catálisis , Análisis de la Demanda Biológica de Oxígeno , Purificación del Agua/métodos
3.
J Environ Manage ; 332: 117340, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36716543

RESUMEN

To identify key species associated with pyrene degradation in Vallisneria natans (V.natans) rhizosphere sediment, this work investigated the temporal and spatial changes in the rhizosphere microbial community and the relationship between the changes and the pyrene degradation process through a three-compartment rhizome-box experiment under pyrene stress. The degradation kinetics of pyrene showed that the order of degradation rate was rhizosphere > near-rhizosphere > non-rhizosphere. The difference in the pyrene degradation behavior in the sediments corresponded to the change in the proportions of dominant phyla (Firmicutes and Proteobacteria) and genera (g_Massilia f_Comamonadaceae, g_Sphingomonas). The symbiosis networks and hierarchical clustering analysis indicated that the more important phyla related to the pyrene degradation in the rhizosphere was Proteobacteria, while g_Sphigomonas, f_Comamonadaceae, and especially g_Massilia were the core genera. Among them, f_Comamonadaceae was the genus most affected by rhizosphere effects. These findings strengthened our understanding of the PAHs-degradation microorganisms in V.natans rhizosphere and are of great significance for enhancing phytoremediation on PAHs-contaminated sediment.


Asunto(s)
Hydrocharitaceae , Microbiota , Hidrocarburos Policíclicos Aromáticos , Rizoma/metabolismo , Pirenos/metabolismo , Hydrocharitaceae/metabolismo , Biodegradación Ambiental
4.
J Environ Manage ; 319: 115662, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35834851

RESUMEN

Prediction of the removal of pollutants is important for the process design and optimization of wastewater treatment. In this study, the heterogeneous catalytic ozonation chemical kinetic model based on reaction kinetic constants between O3 (and •OH) and pollutants, and pseudo-first order rate constants for pollutant adsorption was established. The model parameters were obtained via O3 and p-chlorobenzonic acid decay curves, and adsorption kinetic experiments, respectively. Higher •OH exposures were obtained at the expense of lower O3 exposures during catalytic ozonation compared to simple ozonation. Importantly, the experimentally measured and model-predicted removal ratios correlated well in all reaction systems, with correlation coefficients above 0.950 in synthetic solution and 0.893-0.979 in secondary effluent. Furthermore, the model revealed that pollutants were degraded mainly by O3 and/or •OH oxidation during catalytic ozonation, while adsorption of pollutants on catalysts contributed negligibly. Hence, the degradation ratios of pollutants could be satisfactorily predicted using the simplified model based only on the O3 and •OH exposures in the heterogeneous catalytic ozonation systems with low adsorption capacity catalysts.


Asunto(s)
Cosméticos , Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Catálisis , Oxidación-Reducción , Preparaciones Farmacéuticas
5.
J Environ Manage ; 302(Pt A): 114043, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34735833

RESUMEN

The composite material of manganese-copper oxide/maghemite (MnxCuyOz/γ-Fe2O3) was synthesized by the co-precipitation-calcination method. With the initial concentration of 0.2 g/L MnxCuyOz/γ-Fe2O3 and 10 mg/L O3, the chloramphenicol (CAP, 10 mg/L) could be completely degraded, which was about 2.22 times of that treated with ozonation alone. The contribution of O3 and hydroxyl radical (•OH) for CAP degradation in the catalytic process was 6.9% and 93.1%, respectively. According to the effects of catalyst dosage, ozone dosage, and pH on the catalytic performance of MnxCuyOz/γ-Fe2O3, a predictive empirical model was developed for the ozonation with the MnxCuyOz/γ-Fe2O3 system. The HCO3-/CO32- and phosphates in solution could inhibit the degradation of CAP with the inhibition ratios 8.45% and 13.8%, respectively. The HCO3-/CO32- could compete with CAP and react with •OH, and the phosphates were considered as poisons for catalysts by blocking the surface active sites to inhibit ozone decomposition. The intermediates and possible degradation pathways were detected and proposed. The catalytic ozonation could effectively control the toxicity of the treated solution, but the toxicity was still not negligible. Furthermore, MnxCuyOz/γ-Fe2O3 could be easily and efficiently separated from the reaction system with an external magnet, and it possessed excellent reusability and stability.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Antibacterianos , Catálisis , Cloranfenicol , Cobre , Compuestos Férricos , Cinética , Manganeso , Óxidos , Contaminantes Químicos del Agua/análisis
6.
Chemosphere ; 287(Pt 2): 132126, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34492407

RESUMEN

A novel carbon quantum dots (CQDs) sensitized 2D/2D carbon nitride nanosheets and bismuth tungstate composite (CQD-CNs/BWO) was successfully prepared via the facile hydrothermal method and used for the photocatalytic degradation of norfloxacin (NOR). During 120 min irradiation test, CQD-CNs/BWO exhibited 9 and 1.76 times higher photocatalytic activity than CNs and BWO, respectively. CQDs and constructed 2D/2D structure could not only improve the light harvesting but also promote the generation and separation of electron-holes. The existing inorganic ions in solution (e.g. bicarbonate ions, chlorine ions, and sulfate ions) could inhibit NOR degradation. Based on the electron spin resonance and free radicals inhibition tests, the holes and superoxide radicals rather than hydroxyl radicals were the main reactive species. The intermediates and possible pathways were proposed, and the antibacterial activity of the treated solution after the reaction was evaluated via bacteriostatic tests. The prepared composite material with high photocatalytic activity and stability is potentially effective for the degradation of antibiotics in wastewater.


Asunto(s)
Puntos Cuánticos , Bismuto , Carbono , Catálisis , Luz , Nitrilos , Norfloxacino , Compuestos de Tungsteno
7.
Environ Sci Pollut Res Int ; 28(28): 37636-37646, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33723783

RESUMEN

4-Hydroxybenzophenone (4-OH-BP), a highly toxic and widely used pharmaceutical and personal care products (PPCPs), has been obtained growing concern recently. Electrochemical anodic oxidation technology has been confirmed efficient in eliminating organics from aqueous solution. In this work, we constructed two novel PbO2 electrodes by modifying the middle or active layer with graphene oxide (GO) to degrade aquatic 4-OH-BP. Compared with the pristine PbO2 electrode, the modification by GO could enhance the anchor of the active layer (PbO2 particles) onto the middle layer and improve the isolation of the titanium matrix from the active layer and solution. Therefore, we might obtain the better performance of PbO2 electrodes after modification. Under the experimental conditions optimized by the Box-Behnken design model, as we expected, two novel electrodes (with modified middle layer: 99.85%; with modified active layer: 100%) outperformed the pristine electrode (95.46%) for 4-OH-BP degradation. We proposed the catalytic mechanism of GO-modified electrodes for 4-OH-BP and the degradation pathway of 4-OH-BP and evaluated the toxicity of intermediates based on the quantitative structure-activity relationship model. Furthermore, two GO-modified PbO2 electrodes consumed less energy than commercial boron-doped diamond electrode, reflecting the prominent practicability of GO-modified PbO2 electrode.


Asunto(s)
Óxidos , Contaminantes Químicos del Agua , Benzofenonas , Electrodos , Grafito , Oxidación-Reducción , Titanio , Contaminantes Químicos del Agua/análisis
8.
Environ Sci Pollut Res Int ; 27(5): 4703-4724, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31919822

RESUMEN

MIL-100(Fe), an environmental-friendly and water-stable metal-organic framework (MOF), has caught increasing research and application attention in the recent decade. Thanks to its mesoporous structure and eximious surface area, MIL-100(Fe) has been utilized as precursors for synthesizing various porous materials under high thermolysis temperature, which makes the derivatives of MIL-100(Fe) pretty promising candidates for the decontamination of wastewater. Herein, this review systematically summarizes the versatile synthetic methods and conditions for optimizing the properties of MIL-100(Fe) and its derivatives. Then, diverse environmental applications (i.e., adsorption, photocatalysis, and Fenton-like reaction) of MIL-100(Fe) and its derivatives and the corresponding removal mechanisms are detailed in the discussion. Finally, existing knowledge gaps related to fabrications and applications are discussed to close and promote the future development of MIL-100(Fe) and its derivatives toward environmental applications. Graphical abstract.


Asunto(s)
Compuestos de Hierro/química , Estructuras Metalorgánicas , Aguas Residuales , Descontaminación , Estructuras Metalorgánicas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...